

Fig. 1. Scattering curves for ammonium and nitrogen.
values of $\sin \theta / \lambda$. This would be expected; electrons further away from the central nucleus seem to have little effect on the scattering factor at high values of $\sin \theta / \lambda$. This may be easily seen by reference to the atomic scattering factors in International Tables (1962), where atomic scattering factors for neutral and ionized atoms differ little at larger values of $\sin \theta / \lambda$. The errors in the present scattering factors are unknown but the calculation for $\sin \theta / \lambda=0$ gives 9.998 and 10.001 for the values from the wave functions of Bernal (1953) and Bernal \& Massey (1954) respectively compared with the correct value of 10.000 , so the errors are probably in the third decimal place. This, of course, assumes that the $\mathrm{N}-\mathrm{H}$ distances of $0.97 \AA$ for which the wavefunctions were calculated is correct. The effect of a different $\mathrm{N}-\mathrm{H}$ distance on the wavefunctions and hence on the scattering factors is not known.

Webb's (1965) figures were thought to be due to taking the abscissae of Banyard \& March's (1961) curve to be in \AA whereas they are in atomic units. However, a check calculation based on this gave moderate agreement at low values of $\sin \theta / \lambda$ but very poor agreement at larger values of $\sin \theta / \lambda$. So this assumption cannot be entirely correct.

The scattering curves for ammonium found in the present investigation are very similar although there are differences of up to 10% in individual values. These differences are hardly likely to be important for most work but may cause errors in high accuracy work.
According to Banyard \& March (1961) a comparison of the electron distribution curve for ammonium with that for methane suggests that the figures of Bernal \& Massey (1954) are the more accurate and for this reason the scattering curve for ammonium taken from their figures is probably the best.
The scattering factor for ammonium has been determined experimentally from intensity measurements on ammonium chloride (Wyckoff \& Armstrong, 1930). However, subsequently it has been shown, from infrared spectroscopy (Wagner \& Hornig, 1950), neutron diffraction (Levy \& Peterson, 1952) and electron diffraction (Vainshtein, 1964) that in the room temperature form of ammonium chloride, phase II, the ammonium is not rotating. It is at random in two orientations. Thus these calculated values cannot be compared with the experimental.

References

Banyard, K. E. \& March, N. H. (1961). Acta Cryst. 14, 357.

Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.
Bernal, M. J. M. (1953). Proc. Phys. Soc. A, 66, 514.
Bernal, M. J. M. \& Massey, H. S. W. (1954). Mon. Notices Roy. Ast. Soc. 114, 172.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
James, R. W. (1948). The Optical Principles of the Diffraction of X-rays, p.97, London: Bell.
Levy, H. A. \& Peterson, S. W. (1952). Phys. Rev. 86, 766.
Vainshtein, B. K. (1964). Advances in Structure Research by Diffraction Methods, Vol. 1, p.46. Ed. by R.Brill, Braunschweig: Friedr. Vieweg und Sohn. London and New York: Interscience Publishers.
Webb, M.W. (1965). Acta Cryst. 18, 298.
Wagner, E. L. \& Hornig, D. F. (1952), J. Chem. Phys. 18, 296.

Wyckoff, R. W. G. \& Armstrong, A. H. (1930). Z. Kristallogr. 72, 319.

Acta Cryst. (1966). 21, 823

Chain structure of the orthorhombic modification of dicyclopentadienyl-lead containing bridging π-cyclopen-
 tadienyl rings. By C. Panattoni, G. Bombieri and U. Croatto, Centri Nazionali di Strutturistica Roentgenografica e Chimica delle Radiazioni e dei Radioelementi, Sezioni di Padova, Padova, Italy

(Received 14 September 1965 and in revised form 28 March 1966)

Introduction

The structure of $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ has aroused considerable interest. On the basis of infrared, nuclear magnetic resonance, ultraviolet spectra and dipole moment measurements

Dave, Evans \& Wilkinson (1959) concluded that the evidence supported the hypothesis of an angular sandwich structure. Previously, Fischer \& Grubert (1956) suggested an angular ' σ-bonded structure' in accordance with their dipole moment measurements.

In view of criticism by Dave, Evans \& Wilkinson (1959), Fritz \& Fischer (1961) later extended their earlier measurements of the infrared spectra and concluded that there exists a 'predominantly π-bonding with some additional σ-bonding between metal atoms and rings in dicyclopentadienyltin and probably also in the lead compound'.

Experimental

We have prepared dicyclopentadienyl-lead by the Fischer \& Grubert (1956) method. By sublimation in vacuum we have obtained two crystalline modifications which are very sensitive to exposure to air (Bombieri \& Panattoni, 1966).

Modification 1 occurs as orthorhombic yellow needles, while modification 2, triclinic, has a prismatic habit of brown-yellow colour.

Very small crystals of modification 1 were enclosed in Lindemann capillaries in a nitrogen atmosphere. Multifilm Weissenberg methods with $\mathrm{Cu} K \alpha$ radiation and precession techniques with Mo $K \alpha$ radiation were used to collect $h k 0$ and $h 0 l$ intensity data, respectively. Intensities were measured with a photometer with a potentiometric recorder device and corrected for the Lorentz and polarization factors. On account of the uniform crystal cross-section and the very small dimensions of the crystal (less than 0.01 cm) absorption corrections were neglected. The unit cell containing four $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ molecules has orthorhombic symmetry and possesses the following dimensions:

$$
a=16.37 \pm 0.04, \quad b=6.02 \pm 0.03, \quad c=9.61 \pm 0.03 \AA .
$$

Observed density $2.361 \mathrm{~g} . \mathrm{cm}^{-3}$, calculated density 2.370 $\mathrm{g} . \mathrm{cm}^{-3}$. The observed systematic absences of $k+l \neq 2 n$ for $\{0 k l\}$ and $h \neq 2 n$ for $\{h 0 l\}$ indicate as probable space groups Pna $2_{1}\left(C_{2 v}^{a}\right)$ and $\operatorname{Pnam}\left(D_{2 h}^{16}\right)$.

The disposition of the lead atoms is consistent with both space groups.

If the space group is Pnam the asymmetric unit contains only half a formula unit since there are only four $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ per unit cell: the two cyclopentadienyl groups must be mirrored across the plane $z / c=0.25$ on which the crystallographically independent lead atom lies. Since the symmetry requirements of the non-centrosymmetric space group $P n a 2_{1}$ do not specify the origin of the unit cell in the c lattice vector direction, the z / c coordinate of the independent lead atom can be arbitrarily chosen as $0 \cdot 25$.

From Patterson [001] and [010] projections, it was possible to determine the positions of the independent lead atom at $x / a=0.0821, y / b=0.1050, z / c=0.2500$. Two Fourier syntheses based on Pnam were calculated with the signs given by the heavy atom. The coordinates of the maxima of electron density on the [010] map around the lead atom require a cyclopentadienyl ring across the symmetry plane $z / c=0.25$ with a second cyclopentadienyl ring positioned about the origin of the unit cell. Hence, the centrosymmetric space group Pnam can be ruled out, since it contains a centre of symmetry at the origin, which would allow a cyclopentadienyl ring about it only if the structure were disordered. Since images of the cyclopentadienyl rings were generated phased on the centrosymmetrically located lead atoms, the non-centrosymmetric space group $P n a 2_{1}$ was chosen as the correct one. Fig. 1 shows the positions of the cyclopentadienyl rings based on the interpretation of the Fourier maps.

The coordinates of the cyclopentadienyl rings were refined by the difference synthesis method. The unweighted reliability index for the $\{h 0 l\}$ and $\{h k 0\}$ data decreased from 0.13 and 0.18 respectively to 0.08 and $0 \cdot 10$. With the use of anisotropic temperature coefficients for the lead atom and an identical isotropic factor for the carbon

Table 1. Atomic coordinates and isotropic temperature factors

	x / a	$\sigma(x / a)$	y / b	$\sigma(y / b)$	z/c	$\sigma(z / c)$	$B(h k 0)$	$B(h 0 l)$
Pb	$0.0818+$	$0 \cdot 0003$	$0 \cdot 1030+$	$0 \cdot 0007$	$0 \cdot 2500+$	$0 \cdot 0004$	*	*
C(1)	$0.4418+$	$0 \cdot 004$	$0.4366+$	$0 \cdot 004$	$0.0433+$	$0 \cdot 004$	$1 \cdot 50$	$3 \cdot 46$
C(2)	$0.4968+$	$0 \cdot 004$	$0 \cdot 3000+$	$0 \cdot 004$	0.0267 -	$0 \cdot 004$	1.50	3.46
C(3)	$0.5651+$	0.004	$0 \cdot 3900+$	0.002	$0.0733-$	0.004	1.50	$3 \cdot 46$
C(4)	$0.5484+$	$0 \cdot 004$	$0.6300+$	$0 \cdot 002$	0.0267 -	0.007	1.50	$3 \cdot 46$
C(5)	$0.4801+$	0.003	$0.6433+$	0.002	$0 \cdot 0400+$	$0 \cdot 006$	1.50	3.46
C(6)	$0 \cdot 1900+$	0.004	$0.4233+$	0.004	$0.3533+$	$0 \cdot 002$	$1 \cdot 50$	$3 \cdot 46$
C(7)	$0 \cdot 1984+$	0.004	$0.4433+$	0.004	$0.2066+$	0.002	$1 \cdot 50$	3.46
C(8)	$0.2334+$	0.004	$0 \cdot 2466+$	0.004	$0 \cdot 1400+$	0.004	$1 \cdot 50$	$3 \cdot 46$
C(9)	$0 \cdot 2500+$	0.002	$0 \cdot 1233+$	0.003	$0 \cdot 2366+$	0.005	$1 \cdot 50$	$3 \cdot 46$
C(10)	$0 \cdot 2217+$	$0 \cdot 002$	$0 \cdot 2000+$	0.003	$0 \cdot 3600+$	$0 \cdot 004$	$1 \cdot 50$	$3 \cdot 46$

* For the lead atom the anisotropic thermal parameters are of the form exp $\left\{-0.25 \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{i}{ }^{*} a_{j}{ }^{*}\right\}$

$$
\{h k 0\}: B_{11}=2.06 ; B_{12}=-0 \cdot 19 ; B_{22}=3.94 .\{h 0 l\}: B_{11}=3 \cdot 20 ; B_{13}=0.00 ; B_{33}=4.42
$$

$\mathrm{Pb}(1)-\mathrm{C}(1)$	$3.041 \AA$
$\mathrm{~Pb}(1)-\mathrm{C}(2)$	3.055
$\mathrm{~Pb}(1)-\mathrm{C}(3)$	3.116
$\mathrm{~Pb}(1)-\mathrm{C}(4)$	3.053
$\mathrm{~Pb}(1)-\mathrm{C}(5)$	3.006
$\mathrm{~Pb}(2)-\mathrm{C}(1)$	3.014
$\mathrm{~Pb}(2)-\mathrm{C}(2)$	3.095
$\mathrm{~Pb}(2)-\mathrm{C}(3)$	3.210
$\mathrm{~Pb}(2)-\mathrm{C}(4)$	3.028
$\mathrm{~Pb}(2)-\mathrm{C}(5)$	2.973

$\mathrm{Pb}(1)-\mathrm{C}(6)$	$2.799 \AA$
$\mathrm{~Pb}(1)-\mathrm{C}(7)$	2.830
$\mathrm{~Pb}(1)-\mathrm{C}(8)$	2.832
$\mathrm{~Pb}(1)-\mathrm{C}(9)$	2.761
$\mathrm{~Pb}(1)-\mathrm{C}(10)$	2.589
Average	2.762
$\mathrm{~Pb}(1)-\mathrm{Pb}(2)$	5.636

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.392 \AA$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.320
$\mathrm{C}(3)-\mathrm{C}(4)$	1.536
$\mathrm{C}(4)-\mathrm{C}(5)$	1.291
$\mathrm{C}(5)-\mathrm{C}(1)$	1.393
Average $\mathrm{C}-\mathrm{C}$	1.386

$\mathrm{C}(6)-\mathrm{C}(7)$	$1.420 \AA$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.462
$\mathrm{C}(8)-\mathrm{C}(9)$	1.218
$\mathrm{C}(9)-\mathrm{C}(10)$	1.354
$\mathrm{C}(10)-\mathrm{C}(6)$	1.442
Average $\mathrm{C}-\mathrm{C}$	1.379

[^0]atoms, the intensity data were further refined to final discrepancy values of 0.065 for $\{h 0 l\}$ and 0.064 for $\{h k 0\}$.

Atomic form factors were calculated by the method of Vand, Eiland \& Pepinski (1957) and the subsequent modifications of Forsyth \& Wells (1959). The other crystallographic programs utilized in the structural analysis were written by Panattoni \& Frasson (1962) for Olivetti Elea 6001 computers.
The accuracy of the proposed coordinates was calculated by the method of Cruickshank (1949). Standard deviations were calculated for the well-resolved atoms; no estimates were made for overlapping carbon atoms for which it was

Table 3. Observed and calculated structure factors ($\times 10$) Unobserved reflexions for which $10 F_{o}$ is listed as 0 have $10 F_{0}<300$

Fig. 1. Electron density projection on (010) for $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$. Contours at intervals of $2 \mathrm{e} . \AA^{-3}$. The levels for lead are arbitrary.
not possible to determine accurately the maximum of electron density. The final atomic coordinates with temperature factors are shown in Table 1. The observed and calculated structure factors are listed in Table 3. Table 2 gives the important bond lengths.

Discussion

Fig. 2 gives a perspective view of the molecules in the unit cell. One cyclopentadienyl ring is situated between two lead atoms with a mean lead-carbon distance of $3 \cdot 06 \pm 0 \cdot 1 \AA$: the other cyclopentadienyl ring bonded to only one lead atom has a mean lead-carbon distance of $2 \cdot 76 \pm 0 \cdot 1 \AA$. From the experimentally equivalent bond lengths in Table 3 , it can be seen that the cyclopentadienyl rings are practically perpendicular to the axis Pb - (centre of the ring). The distance between the lead atoms in the chain is $5.636 \pm$ $0.001 \AA$.

The angles between the centres A and B of the cyclopentadienyl rings and lead atom are $A-\mathrm{Pb}-A_{1}=120^{\circ} 50^{\prime}$ and $A-\mathrm{Pb}-B=118^{\circ} 20^{\prime}$.

As found by Frasson, Menegus \& Panattoni (1963) in $\mathrm{Tl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{In}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, we have another example of a polymeric system involving cyclopentadienyl rings bridging non-transition-metal heavy atoms. The chains, oriented along the c axis, are realized with a zigzag disposition between the lead atoms and bridging cyclopentadienyl rings. This structure is in agreement with the hypothesis made for the monomer by Dave, Evans \& Wilkinson (1959) in which they proposed that the lead atom is in an $s p^{2}$ hybridization state: two of the hybrid orbitals bind two cyclopentadienyl rings and the other is occupied by a lone pair of electrons. The chain polymerization can be considered to arise as a result of the interaction of this lone pair of electrons on a given lead atom of a monomeric molecule with the cyclopentadienyl ring of a neighbouring monomer.

A three-centre bond is obtained by overlapping two opposite $s p^{2}$ hybrid orbitals of two successive lead atoms in the chain and the σ-orbital (i.e. the molecular orbital of the π system belonging to the irreducible representation $A_{2}^{\prime \prime}$ of the $D_{5 h}$ symmetry group) of the cyclopentadienyl ring situated between them. In this way three molecular orbitals are produced: bonding, non-bonding and antibonding. The first two orbitals are doubly occupied. As a consequence the binding energy between a lead atom and a bridging cyclopentadienyl ring is smaller than in the free monomeric molecule.

Fig. 2. A perspective view of the chains in $\mathrm{Pb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.

The p_{z} orbitals for the lead atoms and one of the e_{1} orbitals of the cyclopentadienyl ring (with the right symmetry) are arranged in such a way as to give a conjugated system. A monomeric molecule participates in the π system with four electrons.
This configuration justifies a planar structure for the polymeric chain.

References

Dave, L. D., Evans, D. F. \& Wilkinson, G. (1959). J. Chem. Soc. 3684.

Fritz, H. P. \& Fischer, E. O. (1961). J. Chem. Soc. 547.
Fischer, E. O. \& Grubert, H. (1956). Z. anorg. Chem. 286, 327.

Vand, V., Eiland, P. F. \& Pepinsky, R. (1957). Acta Cryst. 10, 303.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412.
Panattoni, C. \& Frasson, E. (1962). Ric. Sci. 32, II-A, 376.
Cruickshank, D. J.W. (1949). Acta Cryst. 12, 412.
Frasson, E., Menegus, F. \& Panattoni, C. (1963). Nature, Lond. 199, 1087.
Bombieri, G. \& Panattoni, C. (1966). Acta Cryst. 20, 595.

Acta Cryst. (1966). 21, 826
Intensity corrections for the Guinier camera. By W.H.Sas and P. M. de Wolff, Laboratorium voor Technische Natuurkunde der Technische Hogeschool, Lorentzweg 1, Delft, The Netherlands
(Received 26 March 1966)

Intensity corrections for the Guinier camera

The integrated intensities as measured on a photometer record of powder diffraction lines on a Guinier film can be written as follows:

$$
\begin{equation*}
I=k p T F^{2} \mathrm{LP} A B S G ; L=1 / \sin ^{2} \theta \cos \theta \tag{1}
\end{equation*}
$$

where $k, p, T, F, \mathrm{~L}$ and P are scale-, multiplicity-, temper-ature-, structure-, Lorentz- and polarization factor respectively. We shall show that the combined effect of the remaining factors A, B, S, G can be approximated by a linear function of $\cos (2 \theta-\psi), \psi$ being the angle between specimen normal and crystal-reflected primary beam; and we present nomograms from which the normalized slope of this function can be found for $\psi=30^{\circ}$.

The factor A accounts for absorption in the specimen (thickness d, linear absorption coefficient μ):

Fig.1. The combined correction factor $N=A B S G$ (circles) as a function of $\cos \chi$ for $\psi=30^{\circ}, \mu_{1} d_{1}=\mu_{2} d_{2}=0 \cdot 35, \mu_{p} d_{p}=0 \cdot 1$ and 8 values of μd. The linear least-squares approximation is shown by the straight lines.

$$
\begin{gather*}
A=-\frac{1}{\mu d} \frac{\cos \psi \cdot \cos \chi}{\cos } \frac{\psi-\cos \chi}{\psi-\exp \{-(\mu d / \cos \psi)\}-\exp } \tag{2}\\
\{-(\mu d / \cos \chi)\}]
\end{gather*}
$$

where $\chi=|2 \theta-\psi|$.
The factor B accounts for absorption in a layer which is often present in front of the film, e.g. wrapping paper or filter (thickness d_{p}, linear absorption coefficient μ_{p}).

$$
\begin{equation*}
B=\exp \left\{-\left(\mu_{p} d_{p} / \cos \chi\right)\right\} \tag{3}
\end{equation*}
$$

S is the oblique incidence factor for integrated intensities:

$$
\begin{gather*}
S=\frac{\left[1-\exp \left\{-\left(\mu_{1} d_{1} / \cos \chi\right)\right\}\right]}{\left[1-\exp \left\{-\mu_{1} d_{1}\right\}\right]} \\
\times \frac{\left[1+\exp \left\{-\left(\mu_{1} d_{1}+\mu_{2} d_{2}\right) / \cos \chi\right\}\right]}{\left[1+\exp \left\{-\left(\mu_{1} d_{1}+\mu_{2} d_{2}\right)\right\}\right]} \tag{4}
\end{gather*}
$$

where d_{1} and d_{2} are the thicknesses of one layer of emulsion and of the base, respectively and μ_{1}, μ_{2} are the corresponding linear absorption coefficients (International Tables for X-ray Crystallography, 1962). G is a geometric factor:

$$
\begin{equation*}
G=1 / \cos \chi \tag{5}
\end{equation*}
$$

(International Tables, 1962), arising from the fact that the θ-dependent factor in (1) is valid for a constant specimenfilm distance, whereas in the Guinier camera that distance varies as $\cos \chi$. Since a photometer measures the energy over a constant height of the diffraction line, the corresponding fraction of the total energy in the Debye-Scherrer cone contains the extra factor $1 / \cos \chi$.*

If we define $N=A B S G$, then N is a function of $\cos \chi$, with parameters $\psi, \mu d, \mu_{1} d_{1}, \mu_{2} d_{2}, \mu_{p} d_{p}$, because A, B, S, G are all functions of $\cos \chi$. For $\mu_{1} d_{1}=\mu_{2} d_{2}$ as well as for $\mu_{2} d_{2}=0$ and a great number of different combinations of

* Hellner (1954) gave an entirely different expression for the geometric factor, which has been cited and tabulated by Sagel (1958). Professor Hellner (private communication) now states that his formula resulted from an erroneous derivation and kindly pointed out to us that the correct expression was given first by Hägg \& Regnström (1944).

[^0]: Average $\mathrm{Pb}-\mathrm{C} 3.059$

